Spatial and temporal translational control of germ cell mRNAs mediated by the eIF4E isoform IFE-1.
نویسندگان
چکیده
Regulated mRNA translation is vital for germ cells to produce new proteins in the spatial and temporal patterns that drive gamete development. Translational control involves the de-repression of stored mRNAs and their recruitment by eukaryotic initiation factors (eIFs) to ribosomes. C. elegans expresses five eIF4Es (IFE-1-IFE-5); several have been shown to selectively recruit unique pools of mRNA. Individual IFE knockouts yield unique phenotypes due to inefficient translation of certain mRNAs. Here, we identified mRNAs preferentially translated through the germline-specific eIF4E isoform IFE-1. Differential polysome microarray analysis identified 77 mRNAs recruited by IFE-1. Among the IFE-1-dependent mRNAs are several required for late germ cell differentiation and maturation. Polysome association of gld-1, vab-1, vpr-1, rab-7 and rnp-3 mRNAs relies on IFE-1. Live animal imaging showed IFE-1-dependent selectivity in spatial and temporal translation of germline mRNAs. Altered MAPK activation in oocytes suggests dual roles for IFE-1, both promoting and suppressing oocyte maturation at different stages. This single eIF4E isoform exerts positive, selective translational control during germ cell differentiation.
منابع مشابه
A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm.
Fertility and embryonic viability are measures of efficient germ cell growth and development. During oogenesis and spermatogenesis, new proteins are required for both mitotic expansion and differentiation. Qualitative and quantitative changes in protein synthesis occur by translational control of mRNAs, mediated in part by eIF4E, which binds the mRNAs 5' cap. IFE-1 is one of five eIF4E isoforms...
متن کاملMultiple isoforms of eukaryotic protein synthesis initiation factor 4E in Caenorhabditis elegans can distinguish between mono- and trimethylated mRNA cap structures.
The rate-limiting step for cap-dependent translation initiation in eukaryotes is recruitment of mRNA to the ribosome. An early event in this process is recognition of the m7GTP-containing cap structure at the 5'-end of the mRNA by initiation factor eIF4E. In the nematode Caenorhabditis elegans, mRNAs from 70% of the genes contain a different cap structure, m32,2,7GTP. This cap structure is poor...
متن کاملA C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs
Introduction Initiation of translation in eukaryotes requires the action of at least 33 polypeptides constituting the canonical initiation factors, which act to assemble a series of complexes of increasing size: 43S, 48S and 80S (Kapp and Lorsch, 2004). The rate-limiting step under normal conditions is binding of mRNA to the 43S pre-initiation complex to form the 48S pre-initiation complex. Eff...
متن کاملMicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملA C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins.
Caenorhabditis elegans expresses five family members of the translation initiation factor eIF4E whose individual physiological roles are only partially understood. We report a specific role for IFE-2 in a conserved temperature-sensitive meiotic process. ife-2 deletion mutants have severe temperature-sensitive chromosome-segregation defects. Mutant germ cells contain the normal six bivalents at ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 128 24 شماره
صفحات -
تاریخ انتشار 2015